博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
big data vs HPC
阅读量:5057 次
发布时间:2019-06-12

本文共 788 字,大约阅读时间需要 2 分钟。

      When I tried some SIMD optimization in large-scale simulation(HPC), it is so difficult to implment. Since there is no easy way to change the simulatoin logic to use e.g. matrix blocking, and go to finer-gratunity, BLAS or simlar math libs is already high-performance.

       For example, same idea , use cache and do map-reduce. While the algorithm logic is to avoid cached large matrix on each core, also we need synchronization on every iteration due to algorithm logic, which makes map-reduce painful.

     I suppose there maybe two issues: either HPC algorithm design should at first considering scalabity like big data apps, which lead the components can be easy distributed, or big data is big data, but simple processing logic.

   

转载于:https://www.cnblogs.com/zjli/p/5050913.html

你可能感兴趣的文章
语义web基础知识学习
查看>>
hexo个人博客添加宠物/鼠标点击效果/博客管理
查看>>
python asyncio 异步实现mongodb数据转xls文件
查看>>
关于WPF的2000件事 02--WPF界面是如何渲染的?
查看>>
C#抽象类
查看>>
Objective-C 宏定义的收集
查看>>
Failed to install WatchKit App, error: Application Verification Failed
查看>>
基于朴素贝叶斯的定位算法
查看>>
单元测试、、、
查看>>
深入理解include预编译原理
查看>>
SVN使用教程总结
查看>>
assist x win7 破解版
查看>>
ajax导出excel文件并增加等待动画效果
查看>>
关于ILOG Elixir
查看>>
JS 浏览器对象
查看>>
TestNG入门
查看>>
【ul开发攻略】HTML5/CSS3菜单代码 阴影+发光+圆角
查看>>
虚拟中没有eth0
查看>>
Unity 3D游戏开发学习路线(方法篇)
查看>>
BZOJ2049[Sdoi2008]Cave 洞穴勘测(LCT模板)
查看>>